资源目录
├──1–人工智能基础-快速入门
|   ├──1–人工智能就业、薪资、各行业应用
|   |   ├──1-人工智能就业前景与薪资 .mp4  52.07M
|   |   ├──2-人工智能适合人群与必备技能 .mp4  44.57M
|   |   ├──3-人工智能时代是发展的必然 .mp4  23.22M
|   |   └──4-人工智能在各领域的应用 .mp4  57.73M
|   └──2–机器学习和深度学习、有监督和无监督
|   |   ├──1-人工智能常见流程 .mp4  89.62M
|   |   ├──2-机器学习不同的学习方式 .mp4  83.51M
|   |   ├──3-深度学习比传统机器学习有优势 .mp4  84.81M
|   |   ├──4-有监督机器学习任务与本质 .mp4  37.50M
|   |   └──5-无监督机器学习任务与本质 .mp4  50.15M
├──10–机器学习与大数据-Kaggle竞赛实战
|   ├──1–药店销量预测案例
|   |   ├──1-Rossmann药店销量预测_kaggle的介绍 .mp4  36.33M
|   |   ├──2-对数据字段的介绍_导包 .mp4  19.90M
|   |   ├──3-自定义损失函数 .mp4  21.12M
|   |   ├──4-对数据里面的目标变量sales的一个分析 .mp4  44.88M
|   |   ├──5-数据的预处理 .mp4  111.81M
|   |   ├──6-模型的训练_评估 .mp4  66.64M
|   |   └──7-kaggle竞赛网站学习 .mp4  172.16M
|   └──2–网页分类案例
|   |   ├──1-Kaggle网页分类竞赛介绍 .mp4  25.08M
|   |   ├──10-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_02 .mp4  85.63M
|   |   ├──11-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_03 .mp4  68.80M
|   |   ├──12-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_04 .mp4  74.74M
|   |   ├──2-评估指标ROC和AUC .mp4  56.19M
|   |   ├──3-评估指标ROC和AUC .mp4  49.03M
|   |   ├──4-竞赛其他相关提交成绩排行榜 .mp4  40.19M
|   |   ├──5-数据导入 .mp4  68.41M
|   |   ├──6-MLlib对网页分类竞赛数据预处理 .mp4  102.96M
|   |   ├──7-MLlib对网页分类竞赛数据预处理_模型训练 .mp4  71.27M
|   |   ├──8-MLlib对网页分类竞赛模型训练_模型训练评估_搜索最佳超参数 .mp4  62.48M
|   |   └──9-使用SparkML对网页分类竞赛数据预处理_模型训练_交叉验证调参_01 .mp4  87.47M
├──11–机器学习与大数据-海量数据挖掘工具
|   ├──1–Spark计算框架基础
|   |   ├──1-Spark特性_01 .mp4  41.68M
|   |   ├──10-分布式计算所需进程 .mp4  26.30M
|   |   ├──11-两种算子操作本质区别 .mp4  56.31M
|   |   ├──12-Spark算子操作实战讲解_代码实战WordCount_01 .mp4  69.39M
|   |   ├──13-Spark算子操作实战讲解_代码实战WordCount_02 .mp4  56.06M
|   |   ├──14-Spark算子操作实战讲解_代码实战WordCount_03 .mp4  44.12M
|   |   ├──15-Spark算子操作实战讲解_代码实战WordCount_04 .mp4  41.91M
|   |   ├──2-Spark特性_02 .mp4  35.15M
|   |   ├──3-Spark对比hadoop优势 .mp4  19.34M
|   |   ├──4-回顾hadoop讲解shuffle .mp4  35.80M
|   |   ├──5-分布式计算框架Shuffle的原理_01 .mp4  46.22M
|   |   ├──6-分布式计算框架Shuffle的原理_02 .mp4  44.94M
|   |   ├──7-分布式计算框架Shuffle的原理_03 .mp4  29.26M
|   |   ├──8-Spark的RDD特性_01 .mp4  33.08M
|   |   └──9-Spark的RDD特性_02 .mp4  33.41M
|   ├──2–Spark计算框架深入
|   |   ├──1-Spark数据缓存机制 .mp4  54.43M
|   |   ├──10-讲解构建稀疏和稠密向量_01 .mp4  80.62M
|   |   ├──11-讲解构建稀疏和稠密向量_01 .mp4  101.76M
|   |   ├──12-构建LabeledPoint .mp4  111.08M
|   |   ├──13-介绍SparkMLlib模块中实现的算法和调用 .mp4  91.18M
|   |   ├──2-Spark宽依赖和窄依赖_01 .mp4  39.74M
|   |   ├──3-Spark宽依赖和窄依赖_02 .mp4  38.86M
|   |   ├──4-Spark宽依赖和窄依赖_03 .mp4  28.03M
|   |   ├──5-Spark术语总结 .mp4  89.66M
|   |   ├──6-分布式文件系统Block块的大小配置 .mp4  114.54M
|   |   ├──7-Spark程序启动运行流程详解_01 .mp4  49.37M
|   |   ├──8-Spark程序启动运行流程详解_02 .mp4  71.40M
|   |   └──9-Spark程序启动运行流程详解_03 .mp4  47.28M
|   └──3–Spark机器学习MLlib和ML模块
|   |   ├──1-SparkMLlib对于逻辑回归算法的调用 .mp4  170.37M
|   |   ├──10-SparkMLlib调用KMeans聚类_调用决策树(1)_3 .mp4  104.55M
|   |   ├──11-使用逻辑回归和随机森林对股票Stock预测案例实战_1 .mp4  89.72M
|   |   ├──12-使用逻辑回归和随机森林对股票Stock预测案例实战_2 .mp4  92.22M
|   |   ├──13-使用逻辑回归和随机森林对股票Stock预测案例实战_3 .mp4  84.20M
|   |   ├──14-从数据转化到训练集的构建 .mp4  146.40M
|   |   ├──15-模型的训练以及评估和调超参_1 .mp4  84.62M
|   |   ├──16-模型的训练以及评估和调超参_2 .mp4  88.90M
|   |   ├──17-模型的训练以及评估和调超参_3 .mp4  161.69M
|   |   ├──18-SparkML机器学习库概念讲解_1 .mp4  146.78M
|   |   ├──19-SparkML机器学习库概念讲解_2 .mp4  121.35M
|   |   ├──2-SparkMLlib调用逻辑回归_自定义阈值_1 .mp4  120.62M
|   |   ├──20-SparkML机器学习库代码实战讲解_1 .mp4  146.48M
|   |   ├──21-SparkML机器学习库代码实战讲解_2 .mp4  169.53M
|   |   ├──22-SparkML网页分类案例代码实战续(1)_1 .mp4  143.99M
|   |   ├──23-SparkML网页分类案例代码实战续(1)_2 .mp4  143.95M
|   |   ├──24-SparkML网页分类案例代码实战续(2)_1 .mp4  177.12M
|   |   ├──25-SparkML网页分类案例代码实战续(2)_2 .mp4  99.25M
|   |   ├──26-SparkML网页分类案例代码实战续(3) .mp4  9.82M
|   |   ├──3-SparkMLlib调用逻辑回归_自定义阈值_2 .mp4  109.35M
|   |   ├──4-SparkMLlib调用逻辑回归_使用标准归一化_1 .mp4  105.05M
|   |   ├──5-SparkMLlib调用逻辑回归_使用标准归一化_2 .mp4  255.32M
|   |   ├──6-SparkMLlib调用逻辑回归_使用标准归一化_3 .mp4  63.11M
|   |   ├──7-SparkMLlib调用逻辑回归_使用标准归一化_4 .mp4  140.87M
|   |   ├──8-SparkMLlib调用KMeans聚类_调用决策树(1)_1 .mp4  80.22M
|   |   └──9-SparkMLlib调用KMeans聚类_调用决策树(1)_2 .mp4  145.67M
├──12–机器学习与大数据-推荐系统项目实战
|   ├──1–推荐系统–流程与架构
|   |   ├──1-推荐系统_隐式用户反馈_1 .mp4  88.31M
|   |   ├──10-推荐系统列表_关联特征权重_基本特征权重的计算_2 .mp4  112.85M
|   |   ├──11-推荐系统列表_关联特征权重_基本特征权重的计算_3 .mp4  103.28M
|   |   ├──12-推荐系统_数据源_1 .mp4  79.07M
|   |   ├──13-推荐系统_数据源_2 .mp4  82.90M
|   |   ├──2-推荐系统_隐式用户反馈_2 .mp4  119.78M
|   |   ├──3-推荐系统_协同过滤_1 .mp4  60.31M
|   |   ├──4-推荐系统_协同过滤_2 .mp4  61.36M
|   |   ├──5-推荐系统_协同过滤_3 .mp4  60.51M
|   |   ├──6-推荐系统_协同过滤_4 .mp4  56.16M
|   |   ├──7-推荐系统架构_实时_离线_1 .mp4  100.65M
|   |   ├──8-推荐系统架构_实时_离线_2 .mp4  104.74M
|   |   └──9-推荐系统列表_关联特征权重_基本特征权重的计算_1 .mp4  77.80M
|   ├──2–推荐系统–数据预处理和模型构建评估实战
|   |   ├──1-HQL语句_python脚本构建中间结果_1 .mp4  155.76M
|   |   ├──10-MLlib调用算法计算模型文件并存储_2 .mp4  93.65M
|   |   ├──11-MLlib调用算法计算模型文件并存储_3 .mp4  107.32M
|   |   ├──12-ACC准确率和AUC面积的计算以及意义 .mp4  214.40M
|   |   ├──2-HQL语句_python脚本构建中间结果_2 .mp4  122.28M
|   |   ├──3-HQL语句_python脚本构建中间结果_3 .mp4  123.74M
|   |   ├──4-HQL语句_python脚本构建中间结果_4 .mp4  111.87M
|   |   ├──5-推荐系统_数据预处理_spark构建特征索引_标签列_1 .mp4  116.88M
|   |   ├──6-spark构建特征索引_标签列_2 .mp4  91.86M
|   |   ├──7-spark构建特征索引_标签列_3 .mp4  97.86M
|   |   ├──8-spark构建特征索引_标签列_4 .mp4  98.61M
|   |   └──9-MLlib调用算法计算模型文件并存储_1 .mp4  99.64M
|   └──3–推荐系统–模型使用和推荐服务
|   |   ├──1-推荐模型文件使用思路 .mp4  61.89M
|   |   ├──10-Dubbo推荐服务演示_SparkMLlib介绍_1 .mp4  110.16M
|   |   ├──11-Dubbo推荐服务演示_SparkMLlib介绍_2 .mp4  140.10M
|   |   ├──12-Dubbo推荐服务演示_SparkMLlib介绍_3 .mp4  157.45M
|   |   ├──2-Redis数据库安装及其使用 .mp4  47.93M
|   |   ├──3-实时在线推荐列表计算逻辑代码讲解_1 .mp4  165.06M
|   |   ├──4-实时在线推荐列表计算逻辑代码讲解_2 .mp4  98.49M
|   |   ├──5-实时在线推荐列表计算逻辑代码讲解_3 .mp4  90.57M
|   |   ├──6-实时在线推荐列表计算逻辑代码讲解_4 .mp4  94.68M
|   |   ├──7-使用Dubbo将推荐系统做成服务_1 .mp4  82.21M
|   |   ├──8-使用Dubbo将推荐系统做成服务_2 .mp4  103.88M
|   |   └──9-使用Dubbo将推荐系统做成服务_3 .mp4  119.95M
├──13–深度学习-原理和进阶
|   ├──1–神经网络算法
|   |   ├──1-神经网络是有监督的算法_生物神经元到人工神经元 .mp4  94.41M
|   |   ├──2-三种常见的激活函数_网络拓扑介绍_优化算法 .mp4  53.63M
|   |   ├──3-单层神经网络正向传播计算过程_用神经网络理解逻辑回归做多分类 .mp4  67.67M
|   |   ├──4-用神经网络理解Softmax回归 .mp4  67.20M
|   |   ├──5-隐藏层的意义_隐藏层相当于去做预处理_升维降维 .mp4  117.52M
|   |   ├──6-多节点网络输出_sklearn中NN模块的介绍 .mp4  90.57M
|   |   ├──7-sklearn中NN模型的代码使用 .mp4  123.62M
|   |   ├──8-隐藏层激活函数必须是非线性的 .mp4  21.95M
|   |   └──9-tensorflow概要_conda创建虚拟环境_CPU版本的tensorflow安装 .mp4  155.50M
|   ├──2–TensorFlow深度学习工具
|   |   ├──1-CUDA下载地址_CUDA显卡白名单地址 .mp4  68.65M
|   |   ├──2-CUDA安装_cudnn安装_环境变量配置_检验是否安装成功 .mp4  74.12M
|   |   ├──3-Tensorflow代码运行机制_TF基础的代码 .mp4  120.73M
|   |   ├──4-TF实现线性回归解析解的方式_TF实现线性回归梯度下降的方式 .mp4  173.47M
|   |   ├──5-TF实现线性回归BGD的方式_使用Optimizer_每轮打乱数据 .mp4  233.26M
|   |   ├──6-TF实现Softmax回归来识别MNIST手写数字 .mp4  137.04M
|   |   └──7-TF实现DNN来识别MNIST手写数字 .mp4  132.73M
|   └──3–反向传播推导_Python代码实现神经网络
|   |   ├──1-反向传播_链式求导法则 .mp4  86.47M
|   |   ├──2-反向传播推导(一) .mp4  127.90M
|   |   ├──3-反向传播推导(二)从输出层到最后一个隐藏层 .mp4  121.37M
|   |   ├──4-反向传播推导(三)从输出层到最后一个隐藏层Softmax多分类为例 .mp4  81.20M
|   |   ├──5-反向传播推导(四)关于Δ和a还有梯度的更新事宜 .mp4  34.57M
|   |   ├──6-python实现神经网络训练代码讲解(一) .mp4  84.17M
|   |   └──7-python实现神经网络正向反向传播训练 .mp4  112.23M
├──14–深度学习-图像识别原理
|   ├──1–卷积神经网络原理
|   |   ├──1-回顾深度神经网络_卷积层是局部连接 .mp4  131.17M
|   |   ├──2-单通道卷积的计算 .mp4  104.01M
|   |   ├──3-彩色图片卷积的计算 .mp4  52.79M
|   |   ├──4-卷积层权值共享 .mp4  63.93M
|   |   ├──5-卷积的补充与Padding填充模式 .mp4  97.00M
|   |   ├──6-卷积的计算TF中的API操作与参数 .mp4  93.50M
|   |   ├──7-池化的概念和TF中的API的操作与参数 .mp4  64.09M
|   |   └──8-经典的CNN架构和LeNet5 .mp4  137.21M
|   ├──2–卷积神经网络优化
|   |   ├──1-AlexNet网络结构_连续使用小的卷积核好处 .mp4  109.38M
|   |   ├──10-Optimizer_Adagrad_Adadelta_RMSprop .mp4  121.41M
|   |   ├──11-Optimizer_Adam .mp4  141.12M
|   |   ├──2-Dropout技术点思想和运用 .mp4  113.94M
|   |   ├──3-数据增强技术点_CNN对MNIST数据集分类_卷积池化代码 .mp4  77.55M
|   |   ├──4-CNN对MNIST数据集分类_全连接层以及训练代码 .mp4  125.88M
|   |   ├──5-深度学习网络对应ACC准确率忽然下降的思考点 .mp4  104.08M
|   |   ├──6-减轻梯度消失问题中激活函数发挥的作用 .mp4  42.02M
|   |   ├──7-减轻梯度消失问题中参数初始化发挥的作用 .mp4  66.51M
|   |   ├──8-VGG网络结构_以及1乘1的卷积核的作用和好处 .mp4  123.25M
|   |   └──9-Optimizer_SGD_Momentum .mp4  89.70M
|   ├──3–经典卷积网络算法
|   |   ├──1-Keras介绍_以及不同项目调用不同的python环境和CUDA环境 .mp4  141.12M
|   |   ├──2-VGG16_Fine-tuning_对MNIST做手写数字识别 .mp4  116.63M
|   |   ├──3-InceptionV1_V2 .mp4  165.86M
|   |   ├──4-InceptionV3_以及InceptionV3对皮肤癌图片识别 .mp4  166.97M
|   |   ├──5-ResNet残差单元_BottlenetBlocK .mp4  121.51M
|   |   ├──6-DenseNet和Keras里面的实现 .mp4  150.61M
|   |   ├──7-DenseNet在Keras里面的代码实现 .mp4  66.75M
|   |   ├──8-BatchNormalization .mp4  99.23M
|   |   └──9-Mobilenet网络架构 .mp4  150.05M
|   ├──4–古典目标检测
|   |   ├──1-图像识别任务_古典目标检测 .mp4  196.48M
|   |   ├──2-使用OpenCV调用分类器找到目标框 .mp4  98.21M
|   |   ├──3-IOU以及python计算的代码 .mp4  23.56M
|   |   ├──4-R-CNN和SPP-net .mp4  124.06M
|   |   └──5-从FastRCNN引入FasterRCNN .mp4  120.81M
|   └──5–现代目标检测之FasterRCNN
|   |   ├──1-回顾RCNN_SPPnet_Fast-RCNN .mp4  121.18M
|   |   ├──2-FasterRNN的核心RPN_正向传播的框过滤_NMS .mp4  214.14M
|   |   ├──3-NMS代码实现流程_mAP目标检测平均指标 .mp4  157.18M
|   |   ├──4-FasterRCNN论文讲解_从介绍到RPN的loss .mp4  210.02M
|   |   └──5-FasterRCNN论文讲解_从RPN损失到评估指标对比 .mp4  247.99M
├──15–深度学习-图像识别项目实战
|   ├──1–车牌识别
|   |   ├──1-基于CascadeClassifier来提取目标框做车牌识别代码详解_01 .mp4  83.16M
|   |   ├──2-基于CascadeClassifier来提取目标框做车牌识别代码详解_02 .mp4  86.40M
|   |   ├──3-基于CascadeClassifier来提取目标框做车牌识别代码详解_03 .mp4  48.80M
|   |   ├──4-基于CascadeClassifier来提取目标框做车牌识别代码详解_04 .mp4  73.07M
|   |   └──5-车牌识别项目关于目标检测的问题 .mp4  39.48M
|   ├──2–自然场景下的目标检测及源码分析
|   |   ├──1-FasterRCNN项目代码_环境说明_数据集详解_项目结构说明 .mp4  116.49M
|   |   ├──10-FasterRCNN代码_构建head .mp4  67.56M
|   |   ├──11-FasterRCNN代码_构建RPN网络_01 .mp4  124.40M
|   |   ├──12-FasterRCNN代码_构建RPN网络_02 .mp4  88.47M
|   |   ├──13-FasterRCNN代码_根据RPN网络得到校正后的预测的框_01 .mp4  83.97M
|   |   ├──14-FasterRCNN代码_根据RPN网络得到校正后的预测的框_02 .mp4  119.92M
|   |   ├──15-FasterRCNN代码_bbox剪裁_NMS非极大值抑制 .mp4  91.40M
|   |   ├──16-FasterRCNN代码_给RPN准备正负例样本_01 .mp4  100.30M
|   |   ├──17-FasterRCNN代码_给RPN准备正负例样本_02 .mp4  165.71M
|   |   ├──18-FasterRCNN代码_给RPN准备正负例样本_03 .mp4  43.58M
|   |   ├──19-FasterRCNN代码_给RPN准备正负例样本_04 .mp4  46.68M
|   |   ├──2-FasterRCNN项目代码_数据加载 .mp4  96.17M
|   |   ├──20-FasterRCNN代码_给RPN准备正负例样本_05 .mp4  78.02M
|   |   ├──21-FasterRCNN代码_给RPN准备正负例样本_06 .mp4  114.63M
|   |   ├──22-FasterRCNN代码_给RPN准备正负例样本_07 .mp4  100.02M
|   |   ├──23-FasterRCNN代码_给RPN准备正负例样本_08 .mp4  57.32M
|   |   ├──24-FasterRCNN代码_给最终RCNN准备正负例样本_ROI池化_01 .mp4  53.41M
|   |   ├──25-FasterRCNN代码_给最终RCNN准备正负例样本_ROI池化_02 .mp4  74.40M
|   |   ├──26-FasterRCNN代码_添加Loss损失_smoothL1loss .mp4  76.44M
|   |   ├──3-FasterRCNN项目代码_数据增强 .mp4  71.78M
|   |   ├──4-FasterRCNN项目代码_数据初始化 .mp4  73.27M
|   |   ├──5-FasterRCNN项目代码_模型的训练 .mp4  39.33M
|   |   ├──6-回归整体训练流程_详解读取数据blob_01 .mp4  81.18M
|   |   ├──7-回归整体训练流程_详解读取数据blob_02 .mp4  75.71M
|   |   ├──8-回归整体训练流程_详解读取数据blob_03 .mp4  39.22M
|   |   └──9-回归整体训练流程_详解读取数据blob_04 .mp4  64.48M
|   └──3–图像风格迁移
|   |   ├──1-图片风格融合项目_架构_代码实现要点_1 .mp4  81.07M
|   |   ├──2-图片风格融合项目_架构_代码实现要点_2 .mp4  85.15M
|   |   ├──3-图片风格融合项目_架构_代码实现要点_3 .mp4  75.40M
|   |   └──4-图片风格融合项目_架构_代码实现要点_4 .mp4  86.94M
├──16–深度学习-目标检测YOLO(V1-V4全版本)实战
|   ├──1–YOLOv1详解
|   |   ├──1-YOLOv1论文详解_算法特点介绍 .mp4  179.69M
|   |   ├──2-YOLOv1论文详解_网络架构_思想 .mp4  215.92M
|   |   ├──3-YOLOv1论文详解_训练中的技巧_Loss损失函数 .mp4  253.21M
|   |   └──4-YOLOv1论文详解_NMS_局限性 .mp4  82.07M
|   ├──2–YOLOv2详解
|   |   ├──1-YOLOv2论文详解_BN_高分辨率_引入AnchorBoxes .mp4  158.76M
|   |   ├──2-YOLOv2论文详解_mAP更better的一些点 .mp4  257.43M
|   |   ├──3-YOLOv2论文详解_Darknet19_分类数据和检测数据集融合_多标签 .mp4  141.41M
|   |   └──4-YOLOv2论文详解_层级分类_层级分类用于目标检测 .mp4  183.51M
|   ├──3–YOLOv3详解
|   |   ├──1-YOLOv3论文详解_每个框都要预测多个类别概率 .mp4  86.51M
|   |   ├──2-YOLOv3论文详解_引入了FPN的思想特征融合_多路输出_DarkNet53 .mp4  158.58M
|   |   ├──3-YOLOv3论文详解_总结_FocalLoss .mp4  147.48M
|   |   ├──4-YOLOv4论文概述_介绍 .mp4  139.49M
|   |   └──5-YOLOv4论文概述_BOS_BOF .mp4  297.31M
|   ├──4–YOLOv3代码实战
|   |   ├──1-YOLOv3代码剖析_项目介绍 .mp4  157.02M
|   |   ├──2-YOLOv3代码剖析_聚类anchors_构建backbone主干网络 .mp4  238.06M
|   |   ├──3-YOLOv3代码剖析_model输出之后的预测框的计算 .mp4  223.57M
|   |   ├──4-YOLOv3代码剖析_使用model预测的其余代码 .mp4  86.53M
|   |   ├──5-YOLOv3代码剖析_weights到h5模型的转换 .mp4  144.69M
|   |   └──6-YOLOv3代码剖析_模型的训练部分详解 .mp4  316.56M
|   └──5–YOLOv4详解
|   |   ├──1-YOLOv4_BOF_DropBlock_FocalLoss .mp4  207.14M
|   |   ├──2-YOLOv4_BOF_GIoU_DIoU_CIoU .mp4  90.48M
|   |   ├──3-YOLOv4_BOS_ASPP_SAM_SoftNMS_Mish .mp4  216.07M
|   |   └──4-YOLOv4_BOS_SAM_PAN_CSP_CmBN .mp4  220.91M
├──17–深度学习-语义分割原理和实战
|   ├──1–上采样_双线性插值_转置卷积
|   |   ├──1-前言 .mp4  19.46M
|   |   ├──2-上采样_repeat .mp4  23.90M
|   |   ├──3-线性插值 .mp4  34.48M
|   |   ├──4-双线性插值 .mp4  125.71M
|   |   ├──5-转置卷积_以及TF的API .mp4  114.25M
|   |   ├──6-双线性插值作为转置卷积核的初始参数 .mp4  145.01M
|   |   ├──7-ROI Align .mp4  58.38M
|   |   ├──8-FPN思想与网络结构 .mp4  92.14M
|   |   └──9-FPN应用于FasterRCNN_ResNetFPN .mp4  95.52M
|   ├──2–医疗图像UNet语义分割
|   |   ├──1-语义分割的基本概念 .mp4  18.33M
|   |   ├──2-FCN全卷积网络做语义分割 .mp4  36.54M
|   |   ├──3-UNet网络结构 .mp4  30.41M
|   |   └──4-UNet网络医疗图像的语义分割 .mp4  81.21M
|   └──3–蒙版弹幕MaskRCNN语义分割
|   |   ├──1-MaskRCNN网络结构 .mp4  106.38M
|   |   ├──2-MaskRCNN的项目展示 .mp4  250.54M
|   |   ├──3-MaskRCNN网络架构回顾 .mp4  151.34M
|   |   ├──4-MaskRCNN根据文档和论文总结重要的知识点 .mp4  239.08M
|   |   ├──5-MaskRCNN项目关于运行代码环境的说明 .mp4  44.16M
|   |   └──6-MaskRCNN源码config和model .mp4  244.48M
├──18–深度学习-人脸识别项目实战
|   ├──1-人脸识别任务种类_具体做法思路 .mp4  40.67M
|   ├──10-人脸识别项目代码_加载MTCNN模型 .mp4  72.07M
|   ├──11-人脸识别项目代码_读取图片带入MTCNN网络给出人脸候选框 .mp4  66.61M
|   ├──12-FaceNet论文_摘要和前情介绍 .mp4  71.54M
|   ├──13-FaceNet论文_相关的介绍 .mp4  39.55M
|   ├──14-FaceNet论文_TripleLoss思路来源和目标 .mp4  44.25M
|   ├──15-FaceNet论文_TripleLoss损失函数 .mp4  63.78M
|   ├──16-FaceNet论文_TripleSelection很至关重要 .mp4  131.75M
|   ├──17-FaceNet论文_ZF和Inception对比_总结 .mp4  59.21M
|   ├──18-人脸识别项目代码_FaceNet模型加载和使用 .mp4  42.82M
|   ├──19-人脸识别项目代码_人脸匹配以及最后的绘图展示 .mp4  40.37M
|   ├──2-开源的FaceNet项目介绍 .mp4  38.07M
|   ├──3-人脸识别项目代码整体结构 .mp4  30.40M
|   ├──4-MTCNN论文_摘要和介绍 .mp4  68.50M
|   ├──5-MTCNN论文_网络整体架构 .mp4  76.57M
|   ├──6-PRelu_每阶段输出多分支意义 .mp4  56.12M
|   ├──7-每一个阶段每个分支的Loss损失_整合每个分支的Loss .mp4  69.95M
|   ├──8-训练数据的准备_每一阶段训练的流程 .mp4  98.08M
|   └──9-总结MTCNN_缩放因子_注意3阶段网络里面的全连接 .mp4  54.79M
├──19–深度学习-NLP自然语言处理原理和进阶
|   ├──1–词向量与词嵌入
|   |   ├──1-N-gram语言模型 .mp4  116.32M
|   |   ├──2-NPLM神经网络语言模型 .mp4  155.81M
|   |   ├──3-词向量的作用 .mp4  58.00M
|   |   ├──4-CBOW模型思想和计算过程 .mp4  196.59M
|   |   ├──5-Skip-gram模型思想和计算过程 .mp4  44.35M
|   |   ├──6-Huffman树_分层Softmax的思想 .mp4  113.79M
|   |   ├──7-分层Softmax应用到CBOW模型上 .mp4  64.28M
|   |   └──8-负采样和负采样应用到CBOW模型上 .mp4  66.07M
|   ├──2–循环神经网络原理与优化
|   |   ├──1-理解RNN循环神经网络拓扑结构 .mp4  122.64M
|   |   ├──2-理解RNN循环神经网络计算流程 .mp4  55.91M
|   |   ├──3-利用RNN循环神经网络对MNIST手写数字识别 .mp4  127.75M
|   |   ├──4-理解LSTM长短时记忆_记住Topo和公式 .mp4  185.30M
|   |   ├──5-VanillaRNN的回顾复习 .mp4  123.51M
|   |   ├──6-补充讲一下为什么RNN中链越长越容易梯度消失 .mp4  44.24M
|   |   ├──7-LSTM的回顾复习_LSTM手写数字识别 .mp4  35.32M
|   |   ├──8-双向RNN_LSTM .mp4  52.01M
|   |   └──9-RNN里面应用的Topology结构 .mp4  23.04M
|   ├──3–从Attention机制到Transformer
|   |   ├──1-Seq2Seq中Attention注意力机制 .mp4  87.67M
|   |   ├──2-Transformer_Self-Attention_Multi-head .mp4  100.40M
|   |   └──3-Transformer_Positional_使用逻辑_网络结构总结 .mp4  102.40M
|   └──4–ELMO_BERT_GPT
|   |   ├──1-ELMO .mp4  62.44M
|   |   ├──2-BERT理论 .mp4  99.73M
|   |   └──3-ERNIE_GPT .mp4  56.34M
├──2–人工智能基础-Python基础
|   ├──1–Python开发环境搭建
|   |   ├──1-下载Miniconda运行环境 .mp4  100.75M
|   |   ├──2-Miniconda安装和测试 .mp4  57.12M
|   |   ├──3-Pycharm安装和代码运行 .mp4  71.57M
|   |   ├──4-Jupyter安装和代码运行 .mp4  37.10M
|   |   ├──5-Jupyter常用快捷键 .mp4  32.23M
|   |   ├──6-Conda虚拟环境创建与Python模块安装 .mp4  73.12M
|   |   └──7-关联虚拟环境运行代码 .mp4  38.14M
|   └──2–Python基础语法
|   |   ├──1-Python是强类型的动态脚本语言 .mp4  44.15M
|   |   ├──10-Python_集合操作_列表 .mp4  34.71M
|   |   ├──11-Python_集合操作_列表的基本操作 .mp4  49.44M
|   |   ├──12-Python_集合操作_列表的常用方法 .mp4  37.35M
|   |   ├──13-Python_集合操作_元组 .mp4  43.46M
|   |   ├──14-Python_集合操作_字典和常见操作 .mp4  38.01M
|   |   ├──15-Python_集合操作_字典keys方法_enumerate函数 .mp4  22.40M
|   |   ├──16-Python_os模块_shutil模块 .mp4  51.54M
|   |   ├──17-Python_打开并读取文件_中文编码问题 .mp4  58.82M
|   |   ├──18-Python_函数_定义_调用_返回值_注释 .mp4  23.77M
|   |   ├──19-Python_函数_局部变量_全局变量 .mp4  31.20M
|   |   ├──2-Python_控制语句_单双分支 .mp4  50.66M
|   |   ├──20-Python_函数_默认参数_可变参数 .mp4  24.47M
|   |   ├──21-Python_函数_递归 .mp4  23.46M
|   |   ├──22-Python_函数式编程_高阶函数 .mp4  24.65M
|   |   ├──23-Python_函数式编程_map_reduce_filter_匿名函数 .mp4  37.86M
|   |   ├──24-Python_函数_闭包 .mp4  41.61M
|   |   ├──25-Python_函数_装饰器 .mp4  30.35M
|   |   ├──26-Python_类对象_定义与实例化对象 .mp4  44.21M
|   |   ├──27-Python_类对象_实例属性和方法_类属性和方法 .mp4  38.35M
|   |   ├──28-Python_类对象_内置方法 .mp4  29.17M
|   |   ├──29-Python_类对象_运算符重载_私有对象方法_isinstance函数 .mp4  38.46M
|   |   ├──3-Python_控制语句_多分支_三元条件运算符 .mp4  31.02M
|   |   ├──30-Python_类对象_面向对象三大特性_类的继承 .mp4  24.66M
|   |   ├──31-Python_类对象_子类复用父类构造器和方法_方法重写 .mp4  32.00M
|   |   ├──4-Python_控制语句_while循环 .mp4  25.02M
|   |   ├──5-Python_控制语句_for循环 .mp4  22.82M
|   |   ├──6-Python_控制语句_嵌套循环 .mp4  36.15M
|   |   ├──7-Python_控制语句_break_continue .mp4  25.23M
|   |   ├──8-Python_切片操作 .mp4  40.20M
|   |   └──9-Python_数据类型 .mp4  25.38M
├──20–深度学习-NLP自然语言处理项目实战
|   ├──1–词向量
|   |   ├──1-回顾了词向量里面训练的Topology .mp4  121.72M
|   |   ├──2-Word2Vec项目代码_加载数据_构建字典 .mp4  96.76M
|   |   ├──3-Word2Vec项目代码_构建一个个批次数据 .mp4  82.29M
|   |   ├──4-Word2Vec项目代码_正向传播的Graph构建_NCE损失的计算本质 .mp4  102.84M
|   |   ├──5-Word2Vec项目代码_评估比较相似度_最后的训练绘图 .mp4  83.28M
|   |   └──6-Word2Vec项目代码_总结串讲 .mp4  22.52M
|   ├──2–自然语言处理–情感分析
|   |   ├──1-Keras实战RNN以及词嵌入来做情感分析 .mp4  71.10M
|   |   ├──2-数据预处理_01 .mp4  79.65M
|   |   ├──3-数据预处理_02 .mp4  45.68M
|   |   ├──4-代码讲解_01 .mp4  52.29M
|   |   ├──5-代码讲解_02 .mp4  60.85M
|   |   ├──6-代码讲解_03 .mp4  53.89M
|   |   ├──7-代码讲解_04 .mp4  57.19M
|   |   └──8-代码讲解_05 .mp4  35.88M
|   ├──3–AI写唐诗
|   |   ├──1-AI写唐诗_数据的读取_字典的构建_文本的索引化 .mp4  114.96M
|   |   ├──2-AI写唐诗_训练数据的构建 .mp4  69.75M
|   |   ├──3-MultiRNNCell单元 .mp4  38.93M
|   |   ├──4-AI写唐诗_从词嵌入到构建RNN再到输出层概率输出 .mp4  67.03M
|   |   ├──5-AI写唐诗_损失的计算_梯度的求解截断和更新_最终的训练代码 .mp4  61.73M
|   |   └──6-AI写唐诗_模型的使用_增加随机性 .mp4  93.87M
|   ├──4–Seq2Seq聊天机器人
|   |   ├──1-从AI写唐诗到Seq2Seq再到Encoder-Decoder .mp4  118.79M
|   |   ├──2-Seq2Seq版Chatbot的数据预处理 .mp4  93.85M
|   |   └──3-Seq2Seq版Chatbot训练和模型使用 .mp4  133.29M
|   ├──5–实战NER命名实体识别项目
|   |   ├──1-回顾了一下CRF训练和使用过程 .mp4  73.72M
|   |   ├──2-介绍了代码目录结构 .mp4  23.44M
|   |   ├──3-NER代码读取数据和预处理 .mp4  97.61M
|   |   ├──4-feature进入BiLSTM进行正向传播的过程 .mp4  70.91M
|   |   ├──5-通过CRF层来计算Loss损失以及训练 .mp4  80.51M
|   |   ├──6-BiLSTM-CRF模型的预测代码 .mp4  64.10M
|   |   ├──7-CRF中的特征函数们 .mp4  125.97M
|   |   ├──8-对比逻辑回归_相比HMM优势 .mp4  143.56M
|   |   └──9-补充标注偏置问题_HMM做分词代码结构 .mp4  141.43M
|   ├──6–BERT新浪新闻10分类项目
|   |   └──1-BERT新浪新闻10分类项目 .mp4  104.54M
|   └──7–GPT2聊天机器人
|   |   └──1-GPT2闲聊机器人 .mp4  62.28M
├──21–深度学习-OCR文本识别
|   ├──1-传统OCR识别_深度学习OCR识别 .mp4  369.94M
|   ├──10-CRNN项目代码剖析 .mp4  306.48M
|   ├──2-OCR识别本质就是文字检测和文字识别 .mp4  253.34M
|   ├──3-OCR识别的CTC损失思想 .mp4  327.69M
|   ├──4-总结理解深度学习文字识别架构 .mp4  121.59M
|   ├──5-CTC损失函数的理解 .mp4  330.64M
|   ├──6-CTC损失函数前向后向算法推导_梯度求导公式推导 .mp4  200.52M
|   ├──7-CTC前向后向算法代码 .mp4  225.41M
|   ├──8-GreedySearch和BeamSearch解码的方式与代码逻辑 .mp4  308.23M
|   └──9-CPTN项目代码剖析 .mp4  491.69M
├──24–【加课】Pytorch项目实战
|   ├──1–PyTorch运行环境安装_运行环境测试
|   |   ├──1-PyTorch概述 .mp4  29.29M
|   |   ├──2-PyTorch的安装 .mp4  76.45M
|   |   ├──3-Pycharm关联PyTorch运行环境 .mp4  37.96M
|   |   └──4-Jupyter关联PyTorch运行环境 .mp4  31.22M
|   ├──2–PyTorch基础_Tensor张量运算
|   |   ├──1-Tensor的创建 .mp4  55.14M
|   |   ├──2-修改Tensor的形状_索引操作 .mp4  76.51M
|   |   ├──3-广播机制_逐元素操作 .mp4  44.46M
|   |   └──4-归并操作_比较操作_矩阵操作 .mp4  59.39M
|   ├──3–PyTorch卷积神经网络_实战CIFAR10
|   |   ├──1-PyTorch实战CIFAR10数据_读取和展示 .mp4  83.93M
|   |   ├──10-PyTorch代码实战加入数据增强 .mp4  34.15M
|   |   ├──2-PyTorch实战CIFAR10_构建网络_打印网络层次 .mp4  58.61M
|   |   ├──3-PyTorch实战CIFAR10_训练模型_测试模型 .mp4  51.47M
|   |   ├──4-PyTorch实战CIFAR10_分类别打印模型准确率 .mp4  30.60M
|   |   ├──5-使用全局平均池化_使用LeNet模型 .mp4  40.97M
|   |   ├──6-使用集成学习思想训练识别模型 .mp4  86.96M
|   |   ├──7-使用VGG16模型提供准确率 .mp4  52.90M
|   |   ├──8-torchvision里面的预训练模型 .mp4  29.84M
|   |   └──9-迁移学习_PyTorch代码实战冻结预训练模型参数 .mp4  67.71M
|   ├──4–PyTorch循环神经网络_词性标注
|   |   ├──1-PyTorch词性标注_构建数据和词索引号 .mp4  28.07M
|   |   ├──2-PyTorch词性标注_构建词嵌入层LSTM层和词性输出层 .mp4  47.01M
|   |   ├──3-PyTorch词性标注_构建数据索引化和训练模型代码 .mp4  44.59M
|   |   └──4-PyTorch词性标注_测试模型效果 .mp4  11.67M
|   └──5–PyTorch编码器解码器_机器翻译
|   |   ├──1-PyTorch中英文翻译_规范化语料库_构建中英文词典索引 .mp4  50.41M
|   |   ├──2-PyTorch中英文翻译_数据预处理 .mp4  42.68M
|   |   ├──3-PyTorch中英文翻译_索引化数据_转化成Tensor张量_构建Encoder编码器 .mp4  57.69M
|   |   ├──4-PyTorch中英文翻译_构建训练函数之Encoder计算 .mp4  50.92M
|   |   ├──5-PyTorch中英文翻译_构建带Attention注意力机制的Decoder解码器 .mp4  79.33M
|   |   ├──6-PyTorch中英文翻译_构建训练函数之Decoder计算 .mp4  59.08M
|   |   ├──7-PyTorch中英文翻译_评估模型函数 .mp4  56.52M
|   |   └──8-PyTorch中英文翻译_绘制Attentions注意力权重 .mp4  33.74M
├──25–【加课】百度飞桨PaddlePaddle实战【新增】
|   ├──1–PaddlePaddle框架安装_波士顿房价预测
|   |   ├──1-安装PaddlePaddle .mp4  87.34M
|   |   ├──2-Pycharm运行出现mkl-service或DLL找不到的问题 .mp4  45.21M
|   |   ├──3-PaddlePaddle求解线性模型 .mp4  50.63M
|   |   ├──4-预测波士顿房价_数据读取_正向传播 .mp4  60.49M
|   |   └──5-预测波士顿房价_反向传播_模型保存_模型测试 .mp4  43.72M
|   ├──2–PaddlePaddle卷积网络_病理性近视识别
|   |   ├──1-预测病理性近视_图片数据读取 .mp4  97.18M
|   |   ├──2-预测病理性近视_模型训练 .mp4  86.66M
|   |   ├──3-预测病理性近视_定义模型结构_评估模型 .mp4  84.10M
|   |   └──4-预测病理性近视_调用经典卷积神经网络 .mp4  91.83M
|   ├──3–PaddleDetection工具_PCB电路板缺陷检测
|   |   ├──1-PaddleDetection_项目配置 .mp4  82.88M
|   |   ├──2-安装配置VisualStudio_解决安装模块pycocotools或cython_bbox编译报错问题 .mp4  65.48M
|   |   ├──3-PCB电路板缺陷检测_Images和Annotations .mp4  83.10M
|   |   ├──4-PCB电路板缺陷检测_前期数据的分析 .mp4  133.78M
|   |   ├──5-PCB电路板缺陷检测_项目配置文件 .mp4  42.77M
|   |   ├──6-PCB电路板缺陷检测_模型训练 .mp4  64.62M
|   |   └──7-PCB电路板缺陷检测_模型预测 .mp4  51.73M
|   ├──4–PaddleOCR工具_车牌识别(目标检测+CRNN+CTCLoss)
|   |   ├──1-PaddleOCR_项目配置_CCPD数据集介绍 .mp4  69.65M
|   |   ├──2-车牌识别项目_详解数据准备阶段代码 .mp4  42.93M
|   |   ├──3-车牌识别项目_运行保存标签和剪切出的车牌图片 .mp4  57.48M
|   |   ├──4-车牌识别项目_车牌目标框检测模型训练 .mp4  61.62M
|   |   ├──5-车牌识别项目_车牌字符识别模型训练 .mp4  61.89M
|   |   └──6-车牌识别项目_车牌识别模型导出及预测 .mp4  75.61M
|   ├──5–PaddleNLP模块_物流信息提取(BiGRU+CRF)
|   |   ├──1-PaddleNLP_项目配置 .mp4  49.37M
|   |   ├──2-PaddleNLP_物流信息提取项目介绍 .mp4  48.01M
|   |   ├──3-物流信息提取项目_解决导包显示找不到nul问题 .mp4  106.19M
|   |   ├──4-PaddleNLP_物流信息提取项目_加载数据构建DataSet .mp4  55.51M
|   |   ├──5-PaddleNLP_物流信息提取项目_进一步通过DataSet构建出DataLoader .mp4  51.88M
|   |   ├──6-PaddleNLP_物流信息提取项目_构建网络模型 .mp4  48.53M
|   |   ├──7-PaddleNLP_物流信息提取项目_模型训练 .mp4  47.34M
|   |   └──8-PaddleNLP_物流信息提取项目_合并结果并展示_使用预训练的词向量提升效果 .mp4  80.58M
|   └──6–PaddleNLP模块_物流信息提取(ERNIE版)
|   |   ├──1-PaddleNLP_物流信息提取项目_ERNIE实战_加载数据集构建Dataset .mp4  49.47M
|   |   ├──2-PaddleNLP_物流信息提取项目_ERNIE实战_详解Tokenizer作用 .mp4  57.44M
|   |   ├──3-PaddleNLP_物流信息提取项目_ERNIE实战_讲解模型训练和评估代码 .mp4  47.78M
|   |   └──4-PaddleNLP_物流信息提取项目_ERNIE实战_讲解ChunkEvaluator和输出预测结果 .mp4  57.88M
├──26–【加课】Linux 环境编程基础
|   └──1–Linux
|   |   ├──1-Linux_课程介绍 .mp4  3.72M
|   |   ├──10-Linux_常用命令_clear、touch、cat命令 .mp4  10.13M
|   |   ├──11-Linux_常用命令more、head、tail命令 .mp4  16.32M
|   |   ├──12-Linux_常用命令_mkdir命令 .mp4  10.57M
|   |   ├──13-Linux_常用命令_cp命令 .mp4  16.08M
|   |   ├──14-Linux_常用命令_rm、mv命令 .mp4  31.83M
|   |   ├──15-Linux_常用命令_vi、vim .mp4  30.63M
|   |   ├──16-Linux_常用命令_reboot、halt .mp4  4.75M
|   |   ├──17-Linux_常用配置_设置时区 .mp4  28.84M
|   |   ├──18-Linux_常用配置_启动网络 .mp4  15.64M
|   |   ├──19-Linux_常用配置_修改网段 .mp4  12.83M
|   |   ├──2-Linux_Linux简介 .mp4  17.59M
|   |   ├──20-Linux_常用配置_设置网络类型 .mp4  25.66M
|   |   ├──21-Linux_常用配置_快照与克隆 .mp4  16.47M
|   |   ├──22-Linux_Xshell的安装与使用 .mp4  19.51M
|   |   ├──23-Linux_上传与下载_Xftp的使用 .mp4  20.33M
|   |   ├──24-Linux_上传与下载_lrzsz工具 .mp4  43.32M
|   |   ├──25-Linux_文件的压缩与解压缩处理 .mp4  43.12M
|   |   ├──26-Linux_安装MySQL .mp4  79.02M
|   |   ├──3-Linux_VMWare安装及使用 .mp4  20.92M
|   |   ├──4-Linux_安装Linux .mp4  41.97M
|   |   ├──5-Linux_目录介绍 .mp4  20.31M
|   |   ├──6-Linux_Linux中的路径 .mp4  18.65M
|   |   ├──7-Linux_常用命令_pwd命令 .mp4  5.79M
|   |   ├──8-Linux_常用命令_cd命令 .mp4  8.15M
|   |   └──9-Linux_常用命令_ls与ll命令 .mp4  34.39M
├──27–【加课】算法与数据结构
|   └──1–算法与数据结构
|   |   ├──1-数据结构与算法简介 .mp4  35.68M
|   |   ├──10-哈希表的基本结构 .mp4  54.34M
|   |   ├──11-哈希表冲突问题 .mp4  75.92M
|   |   ├──12-哈希表冲突问题2 .mp4  72.30M
|   |   ├──13-哈希扩容 .mp4  111.03M
|   |   ├──14-递归与栈 .mp4  50.77M
|   |   ├──15-线性查找 .mp4  57.80M
|   |   ├──16-二分查找 .mp4  52.32M
|   |   ├──17-冒泡排序 .mp4  53.19M
|   |   ├──18-选择排序 .mp4  43.29M
|   |   ├──19-插入排序 .mp4  31.39M
|   |   ├──2-大O表示法 .mp4  25.59M
|   |   ├──20-归并排序 .mp4  84.48M
|   |   ├──21-快速排序 .mp4  36.63M
|   |   ├──22-树结构 .mp4  96.85M
|   |   ├──23-树结构的遍历 .mp4  61.05M
|   |   ├──24-最大堆的增加操作 .mp4  45.43M
|   |   ├──25-最大堆的删除操作 .mp4  45.63M
|   |   ├──26-二叉树的查找 .mp4  100.24M
|   |   ├──27-二叉树获取最小值 .mp4  25.21M
|   |   ├──28-二叉树的添加 .mp4  72.66M
|   |   ├──29-二叉树的删除 .mp4  120.06M
|   |   ├──3-线性结构 .mp4  53.14M
|   |   ├──4-单线链表1 .mp4  68.36M
|   |   ├──5-单链表2 .mp4  221.69M
|   |   ├──6-双链表 .mp4  103.57M
|   |   ├──7-队列(链式) .mp4  74.12M
|   |   ├──8-队列(线式) .mp4  30.99M
|   |   └──9-栈与双端队列 .mp4  28.12M
├──3–人工智能基础-Python科学计算和可视化
|   ├──1–科学计算模型Numpy
|   |   ├──1-Numpy_概述_安装_创建数组_获取shape形状 .mp4  39.89M
|   |   ├──2-Numpy_array_arange .mp4  35.45M
|   |   ├──3-Numpy_random随机数生成 .mp4  50.54M
|   |   ├──4-Numpy_ndarray属性_zeros_ones_like等创建数组函数 .mp4  45.37M
|   |   ├──5-NumPy_reshape_切片操作_copy函数 .mp4  34.47M
|   |   ├──6-Numpy_改变数组维度_数组的拼接 .mp4  46.50M
|   |   ├──7-Numpy_数组的切分和转置 .mp4  28.34M
|   |   ├──8-Numpy_算术运算_向上向下取整 .mp4  34.59M
|   |   └──9-Numpy_聚合函数 .mp4  23.68M
|   ├──2–数据可视化模块
|   |   ├──1-Matplotlib_概述_绘制直线图 .mp4  40.79M
|   |   ├──2-Matplotlib_绘制正余弦曲线_散点图_添加图例 .mp4  37.73M
|   |   ├──3-Matplotlib_绘制柱状图_画布切分多个子画布_柱状图对比 .mp4  52.15M
|   |   ├──4-Matplotlib_绘制饼图_直方图_同时绘制多组数据分布 .mp4  29.54M
|   |   └──5-Matplotlib_绘制等高线图_绘制三维图像 .mp4  34.90M
|   └──3–数据处理分析模块Pandas
|   |   ├──1-Python_Pandas_Series对象创建 .mp4  33.35M
|   |   ├──2-Python_Pandas_DataFrame对象创建 .mp4  37.19M
|   |   ├──3-Python_Pandas_获取Series对象的值 .mp4  22.41M
|   |   ├──4-Python_Pandas_获取DataFrame对象的值 .mp4  28.31M
|   |   ├──5-Python_Pandas_条件过滤 .mp4  24.66M
|   |   ├──6-Python_Pandas_空值的删除与填充 .mp4  46.66M
|   |   └──7-Python_Pandas_拼接和合并 .mp4  44.84M
├──31–【加课】 强化学习【新增】
|   ├──1–Q-Learning与SARSA算法
|   |   ├──1-强化学习通过智能体与环境交互进行学习 .mp4  81.83M
|   |   ├──10-代码实战Q-Learning智能体训练模型 .mp4  40.30M
|   |   ├──11-代码实战Sarsa_Agent和Env整体交互 .mp4  45.38M
|   |   ├──12-代码实战Sarsa_Agent选择行为和训练模型 .mp4  42.69M
|   |   ├──13-代码实战SarsaLambda_训练模型 .mp4  42.49M
|   |   ├──2-引入马尔科夫链和价值评估的Q值与V值 .mp4  59.84M
|   |   ├──3-详解Q值和V值以及它们之间关系 .mp4  82.69M
|   |   ├──4-蒙特卡洛采样回溯计算V值 .mp4  74.25M
|   |   ├──5-蒙特卡洛和时序差分估算状态V值 .mp4  82.14M
|   |   ├──6-SARSA算法和Q-learning算法 .mp4  76.34M
|   |   ├──7-理解Q-table_创建maze交互环境 .mp4  78.55M
|   |   ├──8-代码实战Q-Learning_Agent和Env整体交互 .mp4  34.23M
|   |   └──9-代码实战Q-Learning智能体选择行为 .mp4  38.39M
|   ├──2–Deep Q-Learning Network
|   |   ├──1-DQN算法思想 .mp4  59.24M
|   |   ├──10-DoubleDQN缓解over-estimate .mp4  44.14M
|   |   ├──11-DoubleDQN代码实战 .mp4  44.49M
|   |   ├──12-DuelingDQN .mp4  88.12M
|   |   ├──13-困难样本挖掘_Multi-step_NoiseyNet系统的探索 .mp4  91.00M
|   |   ├──14-计算Action的方差避免风险 .mp4  54.23M
|   |   ├──15-Rainbow_DQN如何计算连续型的Actions .mp4  65.35M
|   |   ├──2-DQN算法具体流程 .mp4  56.17M
|   |   ├──3-ε-greedy_ReplayBuffer_FixedQ-targets .mp4  96.70M
|   |   ├──4-代码实战DQN_Agent和Env整体交互 .mp4  52.25M
|   |   ├──5-代码实战DQN_构建Q网络 .mp4  70.52M
|   |   ├──6-代码实战DQN_定义损失函数_构建Target网络更新逻辑 .mp4  85.79M
|   |   ├──7-代码实战DQN_训练阶段得到Q网络的预测值和真实值 .mp4  53.49M
|   |   ├──8-代码实战DQN_训练阶段最小化损失_记录loss方便展示_随着learn的越多选择action随机性减小 .mp4  58.93M
|   |   └──9-DQN会over-estimate的本质原因 .mp4  44.92M
|   ├──3–Policy Gradient 策略梯度
|   |   ├──1-策略梯度PG_对比基于值和基于策略网络的区别 .mp4  68.21M
|   |   ├──10-策略梯度PG_同一个回合中不同的action回溯不同的TotalReward_代码实战 .mp4  34.22M
|   |   ├──2-策略梯度PG_明确目标函数和导函数 .mp4  62.20M
|   |   ├──3-策略梯度PG_简化导函数的公式推导 .mp4  36.66M
|   |   ├──4-策略梯度PG_总结整体流程_对比交叉熵损失函数求导 .mp4  33.38M
|   |   ├──5-策略梯度PG_讲解CartPole环境 .mp4  55.59M
|   |   ├──6-代码实战_策略梯度PG和CartPole交互 .mp4  75.57M
|   |   ├──7-代码实战_策略梯度PG网络构建 .mp4  48.86M
|   |   ├──8-代码实战_策略梯度PG选择行为和参数训练 .mp4  54.67M
|   |   └──9-策略梯度PG_对TotalReward进行均值归一化 .mp4  33.07M
|   ├──4–Actor Critic (A3C)
|   |   ├──1-ActorCritic原理_把PG和QLearning结合起来 .mp4  55.33M
|   |   ├──10-代码实战_A3C_增加actor探索性用到熵_定义worker正太分布抽样和求梯度的逻辑 .mp4  36.14M
|   |   ├──11-代码实战_A3C_定义AC网络结构_定义worker拉取参数和更新全局网络参数的逻辑 .mp4  40.24M
|   |   ├──12-代码实战_A3C_结合流程图分三点总结前面讲的代码 .mp4  39.73M
|   |   ├──13-代码实战_A3C_讲解线程中worker和环境交互 .mp4  51.55M
|   |   ├──14-代码实战_A3C_讲解线程中worker和GlobalNet交互_代码运行效果展示 .mp4  47.18M
|   |   ├──2-AdvantageActorCritic_共享参数和修改reward技巧 .mp4  86.42M
|   |   ├──3-代码实战_ActorCritic与环境交互 .mp4  82.51M
|   |   ├──4-代码实战_Actor网络构建及训练 .mp4  58.07M
|   |   ├──5-代码实战_详解Critic网络构建及训练 .mp4  87.92M
|   |   ├──6-A3C架构和训练流程 .mp4  74.66M
|   |   ├──7-Pendulum环境_根据网络预测的μ和σ得到连续型的action值 .mp4  77.58M
|   |   ├──8-代码实战_A3C_讲解Coordinator调度多线程运算 .mp4  32.03M
|   |   └──9-代码实战_A3C_定义Worker计算loss的逻辑_针对连续型的action提高actor探索性 .mp4  36.62M
|   └──5–DDPG、PPO、DPPO算法
|   |   ├──1-DDPG解决DQN不能输出连续型动作的问题_DDPG如何训练Actor和Critic .mp4  81.92M
|   |   ├──10-代码实战_PPO与环境整体交互_Actor与Critic网络构建 .mp4  32.54M
|   |   ├──11-代码实战_定义PPO1和PPO2不同版本Actor的Loss计算逻辑 .mp4  41.02M
|   |   ├──12-代码实战_剖析PPO代码中如何体现Off-Policy的学习方式_效果展示 .mp4  42.12M
|   |   ├──13-DPPO分布式PPO .mp4  63.81M
|   |   ├──14-代码实战_DPPO_创建一个PPO和多个Worker_创建多线程 .mp4  37.79M
|   |   ├──15-代码实战_DPPO_GlobalPPO和Workers交替执行 .mp4  54.72M
|   |   ├──2-代码实战_DDPG_构建Actor和Critic四个网络_定义Critic求loss和求梯度的逻辑 .mp4  51.45M
|   |   ├──3-代码实战_DDPG_Critic网络构建_Actor网络链式求导 .mp4  57.06M
|   |   ├──4-代码实战_DDPG_与环境之间的互动_AC训练调整参数_效果展示 .mp4  44.17M
|   |   ├──5-TD3_使用DoubleNetwork优化DDPG .mp4  63.92M
|   |   ├──6-PPO_强调AC如何输出连续型动作_区分On-Policy与Off-Policy .mp4  38.45M
|   |   ├──7-PPO_通过重要性采样使得PPO可以做Off-Policy学习 .mp4  35.49M
|   |   ├──8-PPO_重要性采样的问题_期望矫正但是方差还是不同带来的问题 .mp4  38.09M
|   |   └──9-PPO_PPO1、TRPO、PPO2三种不同的方式解决两个分布不同的问题 .mp4  61.79M
├──4–人工智能基础-高等数学知识强化
|   ├──1–数学内容概述
|   |   ├──1-人工智能学习数学的必要性_微积分知识点 .mp4  28.76M
|   |   ├──2-线性代数_概率论知识点 .mp4  26.81M
|   |   └──3-最优化知识_数学内容学习重点 .mp4  40.43M
|   ├──2–一元函数微分学
|   |   ├──1-导数的定义_左导数和右导数 .mp4  28.39M
|   |   ├──2-导数的几何意义和物理意义 .mp4  14.49M
|   |   ├──3-常见函数的求导公式 .mp4  22.76M
|   |   ├──4-导数求解的四则运算法则 .mp4  26.52M
|   |   ├──5-复合函数求导法则 .mp4  19.68M
|   |   ├──6-推导激活函数的导函数 .mp4  33.40M
|   |   ├──7-高阶导数_导数判断单调性_导数与极值 .mp4  21.95M
|   |   └──8-导数判断凹凸性_导数用于泰勒展开 .mp4  44.22M
|   ├──3–线性代数基础
|   |   ├──1-向量的意义_n维欧式空间空间 .mp4  20.82M
|   |   ├──10-矩阵的逆矩阵 .mp4  38.54M
|   |   ├──11-矩阵的行列式 .mp4  20.13M
|   |   ├──2-行向量列向量_转置_数乘_加减乘除 .mp4  19.28M
|   |   ├──3-向量的内积_向量运算法则 .mp4  19.78M
|   |   ├──4-学习向量计算的用途举例 .mp4  20.32M
|   |   ├──5-向量的范数_范数与正则项的关系 .mp4  32.40M
|   |   ├──6-特殊的向量 .mp4  26.45M
|   |   ├──7-矩阵_方阵_对称阵_单位阵_对角阵 .mp4  18.06M
|   |   ├──8-矩阵的运算_加减法_转置 .mp4  22.76M
|   |   └──9-矩阵相乘 .mp4  20.02M
|   ├──4–多元函数微分学
|   |   ├──1-多元函数求偏导 .mp4  22.61M
|   |   ├──2-高阶偏导数_梯度 .mp4  27.15M
|   |   ├──3-雅可比矩阵_在神经网络中应用 .mp4  37.65M
|   |   └──4-Hessian矩阵 .mp4  32.93M
|   ├──5–线性代数高级
|   |   ├──1-二次型 .mp4  27.70M
|   |   ├──10-SVD用于PCA降维 .mp4  24.90M
|   |   ├──11-SVD用于协同过滤_求逆矩阵 .mp4  35.85M
|   |   ├──2-补充关于正定负定的理解 .mp4  23.48M
|   |   ├──3-特征值和特征向量(1) .mp4  29.83M
|   |   ├──4-特征值和特征向量(2) .mp4  30.07M
|   |   ├──5-特征值分解 .mp4  38.68M
|   |   ├──6-多元函数的泰勒展开_矩阵和向量的求导 .mp4  44.77M
|   |   ├──7-奇异值分解定义 .mp4  22.58M
|   |   ├──8-求解奇异值分解中的UΣV矩阵 .mp4  49.47M
|   |   └──9-奇异值分解性质_数据压缩 .mp4  38.70M
|   ├──6–概率论
|   |   ├──1-概率论_随机事件与随机事件概率 .mp4  21.71M
|   |   ├──2-条件概率_贝叶斯公式 .mp4  32.64M
|   |   ├──3-随机变量 .mp4  22.57M
|   |   ├──4-数学期望和方差 .mp4  22.96M
|   |   ├──5-常用随机变量服从的分布 .mp4  22.48M
|   |   ├──6-随机向量_独立性_协方差_随机向量的正太分布 .mp4  32.48M
|   |   └──7-最大似然估计思想 .mp4  23.42M
|   └──7–最优化
|   |   ├──1-最优化的基本概念 .mp4  35.14M
|   |   ├──10-拉格朗日函数 .mp4  27.46M
|   |   ├──2-迭代求解的原因 .mp4  20.15M
|   |   ├──3-梯度下降法思路 .mp4  26.33M
|   |   ├──4-梯度下降法的推导 .mp4  43.56M
|   |   ├──5-牛顿法公式推导以及优缺点 .mp4  45.83M
|   |   ├──6-坐标下降法_数值优化面临的问题 .mp4  23.90M
|   |   ├──7-凸集 .mp4  21.90M
|   |   ├──8-凸函数 .mp4  16.93M
|   |   └──9-凸优化的性质_一般表达形式 .mp4  20.81M
├──5–机器学习-线性回归
|   ├──1–多元线性回归
|   |   ├──1-理解简单线性回归 .mp4  51.11M
|   |   ├──10-对数似然函数_推导出损失函数MSE .mp4  41.92M
|   |   ├──11-把目标函数按照线性代数的方式去表达 .mp4  27.00M
|   |   ├──12-推导出目标函数的导函数形式 .mp4  46.38M
|   |   ├──13-θ解析解的公式_是否要考虑损失函数是凸函数 .mp4  59.19M
|   |   ├──14-Python开发环境版本的选择及下载 .mp4  54.07M
|   |   ├──15-Anaconda环境安装_Pycharm环境安装 .mp4  61.07M
|   |   ├──16-Pycharm创建脚本并测试python开发环境 .mp4  40.51M
|   |   ├──17-解析解的方式求解多元线性回归_数据Xy .mp4  40.41M
|   |   ├──18-解析解的方式求解多元线性回归_求解模型_使用模型_绘制图形 .mp4  48.31M
|   |   ├──19-解析解的方式求解多元线性回归_扩展随机种子概念_增加维度代码的变换 .mp4  34.67M
|   |   ├──2-最优解_损失函数_MSE .mp4  39.58M
|   |   ├──20-Scikit-learn模块的介绍 .mp4  29.18M
|   |   ├──21-调用Scikit-learn中的多元线性回归求解模型(上) .mp4  25.20M
|   |   ├──22-调用Scikit-learn中的多元线性回归求解模型(下) .mp4  41.02M
|   |   ├──3-扩展到多元线性回归 .mp4  32.15M
|   |   ├──4-理解多元线性回归表达式几种写法的原因 .mp4  33.97M
|   |   ├──5-理解维度这个概念 .mp4  41.41M
|   |   ├──6-理解回归一词_中心极限定理_正太分布和做预测 .mp4  65.82M
|   |   ├──7-假设误差服从正太分布_最大似然估计MLE .mp4  43.11M
|   |   ├──8-引入正太分布的概率密度函数 .mp4  26.54M
|   |   └──9-明确目标通过最大总似然求解θ .mp4  25.83M
|   ├──2–梯度下降法
|   |   ├──1-梯度下降法产生的目的和原因以及思想 .mp4  59.45M
|   |   ├──10-代码实现全量梯度下降第1步和第2步 .mp4  25.70M
|   |   ├──11-代码实现全量梯度下降第3步和第4步 .mp4  30.73M
|   |   ├──12-代码实现随机梯度下降 .mp4  26.67M
|   |   ├──13-代码实现小批量梯度下降 .mp4  27.32M
|   |   ├──14-代码改进保证训练数据全都能被随机取到 .mp4  40.28M
|   |   ├──15-代码改进实现随着迭代增加动态调整学习率 .mp4  39.24M
|   |   ├──2-梯度下降法公式 .mp4  57.12M
|   |   ├──3-学习率设置的学问_全局最优解 .mp4  56.52M
|   |   ├──4-梯度下降法迭代流程总结 .mp4  30.28M
|   |   ├──5-多元线性回归下的梯度下降法 .mp4  43.27M
|   |   ├──6-全量梯度下降 .mp4  62.84M
|   |   ├──7-随机梯度下降_小批量梯度下降 .mp4  47.62M
|   |   ├──8-对应梯度下降法的问题和挑战 .mp4  47.07M
|   |   └──9-轮次和批次 .mp4  45.22M
|   ├──3–归一化
|   |   ├──1-归一化的目的_维度之间数量级不同产生的矛盾 .mp4  63.62M
|   |   ├──2-归一化的目的_举例子来理解做归一化和不做归一化的区别 .mp4  34.11M
|   |   ├──3-归一化的副产品_有可能会提高模型的精度 .mp4  21.61M
|   |   ├──4-最大值最小值归一化 .mp4  24.87M
|   |   ├──5-标准归一化 .mp4  51.86M
|   |   └──6-代码完成标准归一化 .mp4  41.13M
|   ├──4–正则化
|   |   ├──1-正则化的目的防止过拟合 .mp4  30.71M
|   |   ├──2-正则化通过损失函数加入惩罚项使得W越小越好 .mp4  35.27M
|   |   ├──3-常用的L1和L2正则项以及数学意义 .mp4  41.55M
|   |   ├──4-L1稀疏性和L2平滑性 .mp4  51.64M
|   |   └──5-通过L1和L2的导函数理解区别的本质原因 .mp4  55.58M
|   └──5–Lasso回归_Ridge回归_多项式回归
|   |   ├──1-代码调用Ridge岭回归 .mp4  76.32M
|   |   ├──10-实战保险花销预测_特征选择思路 .mp4  40.29M
|   |   ├──11-实战保险花销预测_特征工程 .mp4  17.96M
|   |   ├──12-实战保险花销预测_模型训练和评估 .mp4  58.86M
|   |   ├──2-代码调用Lasso回归 .mp4  28.73M
|   |   ├──3-代码调用ElasticNet回归 .mp4  53.67M
|   |   ├──4-升维的意义_多项式回归 .mp4  48.06M
|   |   ├──5-多项式升维代码实战_传入不同超参数对比 .mp4  44.78M
|   |   ├──6-多项式升维代码实战_训练模型和评估 .mp4  35.06M
|   |   ├──7-实战保险花销预测_数据介绍和加载数据 .mp4  35.25M
|   |   ├──8-实战保险花销预测_数据预处理 .mp4  41.38M
|   |   └──9-实战保险花销预测_模型训练和评估_选择非线性算法改进 .mp4  84.12M
├──6–机器学习-线性分类
|   ├──1–逻辑回归
|   |   ├──1-逻辑回归_Sigmoid函数 .mp4  21.14M
|   |   ├──10-绘制逻辑回归损失函数_探索两个参数和损失函数变换关系 .mp4  39.83M
|   |   ├──11-绘制逻辑回归损失函数_绘制3D的图形_分析X1X2两个维度的重要度 .mp4  43.87M
|   |   ├──12-对逻辑回归函数进行求导_结论在后面会用到 .mp4  20.50M
|   |   ├──13-对逻辑回归的损失函数求导_推导出导函数的形式 .mp4  42.50M
|   |   ├──14-实战逻辑回归对鸢尾花数据集进行二分类 .mp4  46.63M
|   |   ├──15-OneVsRest将多分类问题转化成多个二分类问题 .mp4  26.13M
|   |   ├──16-实战逻辑回归对鸢尾花数据集进行多分类 .mp4  40.46M
|   |   ├──2-sigmoid函数作用 .mp4  38.15M
|   |   ├──3-逻辑回归为什么用sigmoid函数_预备知识 .mp4  31.00M
|   |   ├──4-证明伯努利分布是指数族分布_推导出逻辑回归公式 .mp4  41.97M
|   |   ├──5-回想多元线性回归公式其实也是从广义线性回归推导出来的 .mp4  6.71M
|   |   ├──6-推导逻辑回归损失函数_得到总似然的公式 .mp4  29.61M
|   |   ├──7-推导逻辑回归损失函数_得到最终形式 .mp4  12.43M
|   |   ├──8-绘制逻辑回归损失函数_读入数据计算最优解模型_实现逻辑回归预测_实现逻辑回归损失函数 .mp4  56.56M
|   |   └──9-绘制逻辑回归损失函数_探索单个参数和损失的关系 .mp4  30.72M
|   ├──2–Softmax回归
|   |   ├──1-证明多项式分布属于指数族分布一种 .mp4  27.93M
|   |   ├──10-实战音乐分类器_代码使用傅里叶变换将混音文件进行投影 .mp4  42.74M
|   |   ├──11-实战音乐分类器_代码对单首歌曲进行傅里叶变换_代码对600首音乐文件进行傅里叶变换并保存结果 .mp4  49.16M
|   |   ├──12-实战音乐分类器_代码读取600首傅里叶变换后的数据_构建训练集并训练模型 .mp4  47.67M
|   |   ├──13-实战音乐分类器_模型的测试和调优_解决双通道音乐文件的问题 .mp4  78.03M
|   |   ├──2-从广义线性回归的η推导出来Softmax的公式 .mp4  21.35M
|   |   ├──3-有了Softmax函数的公式就可以去计算loss_Softmax的Loss函数形式其实就是LR的泛化版本 .mp4  33.42M
|   |   ├──4-再次证明Softmax损失函数当K=2时就是逻辑回归损失函数 .mp4  28.15M
|   |   ├──5-证明Softmax公式K=2的时候就是逻辑回归_平移不变性 .mp4  13.92M
|   |   ├──6-逻辑回归和Softmax回归在多分类任务模型参数上的区别_与算法在选择上的区别 .mp4  46.67M
|   |   ├──7-实战音乐分类器_讲解需求和读取数据 .mp4  32.57M
|   |   ├──8-实战音乐分类器_探索不同曲风音乐文件的时间频率图 .mp4  52.39M
|   |   └──9-实战音乐分类器_傅里叶变换可以帮助我们做什么 .mp4  25.13M
|   ├──3–SVM支持向量机算法
|   |   ├──1-SVM与感知机关系_几何距离与函数距离 .mp4  114.25M
|   |   ├──2-SVM的思想 .mp4  55.56M
|   |   ├──3-几种SVM_SVM的损失函数 .mp4  74.91M
|   |   ├──4-数学预备知识_拉格朗日函数 .mp4  122.44M
|   |   ├──5-硬间隔SVM的两步优化 .mp4  102.88M
|   |   ├──6-总结硬间隔SVM .mp4  39.01M
|   |   ├──7-软间隔SVM和总结流程 .mp4  135.76M
|   |   ├──8-非线性SVM .mp4  54.43M
|   |   └──9-SVM在sklearn中的使用_超参数 .mp4  144.30M
|   └──4–SMO优化算法
|   |   ├──1-SVM算法流程总结 .mp4  58.36M
|   |   ├──10-SVM的SMO实现判断违背条件的α1 .mp4  19.23M
|   |   ├──11-SVM的SMO实现应用公式计算alphas和b .mp4  20.88M
|   |   ├──12-SVM绘制已有数据点和超平面以及边界 .mp4  21.13M
|   |   ├──13-关于sklearn中的SVM封装的类和超参 .mp4  15.47M
|   |   ├──14-概率化输出_SVM的合页损失函数_Tensorflow实现GD方式求解SVM .mp4  69.00M
|   |   ├──15-OVR和OVO多分类_算法小结_对比逻辑回归 .mp4  36.52M
|   |   ├──2-SMO算法求解思路_分解成很多个子二次规划问题分别求解 .mp4  65.42M
|   |   ├──3-SMO将交给它的目标函数变成二元函数进一步变成一元函数 .mp4  63.23M
|   |   ├──4-对一元函数求极值点_推导出旧的α和新的α的关系 .mp4  53.19M
|   |   ├──5-将公式467带入导函数进一步简化_对求解出的新的α2进行剪裁 .mp4  92.38M
|   |   ├──6-再次说明α2如何进行剪裁的思路_根据α2求α1 .mp4  37.62M
|   |   ├──7-启发式选择两个α .mp4  23.11M
|   |   ├──8-如何计算阈值b .mp4  50.18M
|   |   └──9-SVM的SMO实现读取数据和计算fx与Ei .mp4  73.44M
├──7–机器学习-无监督学习
|   ├──1–聚类系列算法
|   |   ├──1-KMeans聚类流程_距离测度欧式距离和余弦距离  .mp4  173.95M
|   |   ├──2-距离测度欧式距离和余弦距离的场景_TFIDF  .mp4  153.55M
|   |   ├──3-KMeans的一些变形_KMeans的损失函数推导及假设  .mp4  167.16M
|   |   ├──4-mini-batchKMeans_Canopy聚类_聚类评估指标  .mp4  214.69M
|   |   ├──5-KMeans代码测试不同情况下的聚类效果  .mp4  148.66M
|   |   └──6-层次聚类_密度聚类_谱聚类  .mp4  264.04M
|   ├──2–EM算法和GMM高斯混合模型
|   |   ├──1-单个高斯分布GM的参数估计  .mp4  112.72M
|   |   ├──2-理解GMM高斯混合分布的对数似然函数  .mp4  95.22M
|   |   ├──3-GMM参数估计Πμσ的流程  .mp4  112.23M
|   |   ├──4-Jensen不等式的应用  .mp4  109.17M
|   |   ├──5-将EM算法应用到GMM中并且推导出了μ和Σ的公式  .mp4  157.57M
|   |   ├──6-将EM算法应用到GMM中并且推导出Π的公式  .mp4  44.12M
|   |   ├──7-GMM前景背景分离  .mp4  16.01M
|   |   ├──8-通过声音文件利用GMM算法识别性别  .mp4  134.39M
|   |   └──9-通过声音文件利用GMM算法识别是谁  .mp4  51.52M
|   └──3–PCA降维算法
|   |   ├──1-特征选择与特征映射  .mp4  49.38M
|   |   ├──2-PCA的最大投影方差思路  .mp4  186.75M
|   |   ├──3-最大投影方差推导_最小投影距离思路  .mp4  115.67M
|   |   ├──4-SVD其实就可以去实现PCA了  .mp4  92.97M
|   |   └──5-PCA的几种应用  .mp4  54.58M
├──8–机器学习-决策树系列
|   ├──1–决策树
|   |   ├──1-决策树模型的特点  .mp4  74.88M
|   |   ├──10-绘制决策树模型_寻找最优树深度  .mp4  97.10M
|   |   ├──11-代码训练回归树拟合SineWave  .mp4  93.81M
|   |   ├──12-后剪枝的意义  .mp4  50.49M
|   |   ├──13-CCP代价复杂度后剪枝  .mp4  130.67M
|   |   ├──14-CCP代价复杂度剪枝_α超参数设定  .mp4  62.18M
|   |   ├──2-决策树的数学表达  .mp4  89.94M
|   |   ├──3-如何构建一颗决策树  .mp4  84.87M
|   |   ├──4-什么是更好的一次划分  .mp4  57.02M
|   |   ├──5-Gini系数  .mp4  107.54M
|   |   ├──6-信息增益  .mp4  75.26M
|   |   ├──7-熵与Gini系数关系_信息增益率  .mp4  118.18M
|   |   ├──8-预剪枝以及相关超参数  .mp4  127.06M
|   |   └──9-代码实战决策树对鸢尾花数据集分类  .mp4  77.90M
|   ├──2–集成学习和随机森林
|   |   ├──1-不同聚合方式_生成不同弱学习器方式  .mp4  80.47M
|   |   ├──2-Bagging_Boosting_Stacking  .mp4  59.02M
|   |   ├──3-随机森林  .mp4  108.14M
|   |   ├──4-代码实战随机森林对鸢尾花数据集分类  .mp4  101.81M
|   |   ├──5-OOB袋外数据  .mp4  106.07M
|   |   ├──6-Adaboost算法思路  .mp4  106.30M
|   |   ├──7-调整数据权重让权重正确率达到50%  .mp4  66.83M
|   |   └──8-Adaboost如何调整样本权重和求基模型权重  .mp4  90.51M
|   ├──3–GBDT
|   |   ├──1-GBDT试图使用有监督最优化算法梯度下降求解F(x)  .mp4  65.49M
|   |   ├──10-GBDT多分类如何每轮给K颗小树准备要去拟合的负梯度  .mp4  72.09M
|   |   ├──11-GBDT多分类流程  .mp4  73.80M
|   |   ├──12-对比GBDT回归、二分类、多分类相同点与不同点  .mp4  60.80M
|   |   ├──13-GBDT二分类叶子节点分值计算推导  .mp4  73.96M
|   |   ├──14-GBDT多分类叶子节点分值计算  .mp4  54.63M
|   |   ├──15-GBDT二分类举例详解  .mp4  86.67M
|   |   ├──16-GBDT多分类举例详解  .mp4  91.71M
|   |   ├──17-计算特征重要度进行特征选择  .mp4  54.87M
|   |   ├──18-GBDT用于特征组合降维  .mp4  43.72M
|   |   ├──19-特征组合降维在GBDT+LR架构应用  .mp4  51.28M
|   |   ├──2-GBDT令每个弱学习器f(x)去拟合负梯度  .mp4  88.39M
|   |   ├──20-GBDT在sklearn中源码剖析_初始化F(x)  .mp4  115.14M
|   |   ├──21-GBDT在sklearn中源码剖析_负梯度计算和叶子节点分值计算  .mp4  71.74M
|   |   ├──22-GBDT+LR架构训练模型代码实现  .mp4  88.40M
|   |   ├──23-GBDT+LR架构预测评估代码实现  .mp4  66.47M
|   |   ├──3-GBDT每棵树都是回归树_准备数据才能训练下一颗小树  .mp4  77.36M
|   |   ├──4-GBDT应用于回归问题  .mp4  84.66M
|   |   ├──5-GBDT回归举例_总结  .mp4  108.52M
|   |   ├──6-GBDT应用于二分类问题  .mp4  70.42M
|   |   ├──7-GBDT二分类拟合的负梯度依然是残差  .mp4  83.81M
|   |   ├──8-GBDT中shrinkage学习率和最优树权重ρ可以共存  .mp4  61.49M
|   |   └──9-GBDT应用于多分类任务  .mp4  73.34M
|   └──4–XGBoost
|   |   ├──1-回顾有监督机器学习三要素  .mp4  82.52M
|   |   ├──10-重新定义树ft和树的复杂度Ω  .mp4  77.70M
|   |   ├──11-由每个叶子节点重组目标函数Obj  .mp4  68.56M
|   |   ├──12-推导XGBoost出Wj计算公式_推导评价树好坏的Obj  .mp4  72.32M
|   |   ├──13-根据Obj收益指导每一次分裂从而学习一棵树结构  .mp4  106.69M
|   |   ├──14-举例说明从连续型和离散型变量中寻找最佳分裂条件  .mp4  73.80M
|   |   ├──15-XGBoost中防止过拟合的前剪枝_后剪枝_学习率  .mp4  71.21M
|   |   ├──16-样本权重对于模型学习的影响  .mp4  59.81M
|   |   ├──17-总结XGBoost的特性_包括缺失值的处理策略  .mp4  101.47M
|   |   ├──2-Bias_Variance_Trade-off  .mp4  66.00M
|   |   ├──3-基于树集成学习4个优点  .mp4  91.36M
|   |   ├──4-回顾基于树集成学习的模型和参数并举例说明  .mp4  93.39M
|   |   ├──5-通过目标函数Obj来达到准确率和复杂度平衡  .mp4  48.31M
|   |   ├──6-Objective_vs_Heuristic  .mp4  60.42M
|   |   ├──7-得出XGBoost最开始的Obj目标函数  .mp4  94.87M
|   |   ├──8-推导XGBoost对Loss二阶泰勒展开之后的Obj  .mp4  48.62M
|   |   └──9-Obj化简常数项_明确训练每颗回归树需要准备gi和hi  .mp4  67.39M
├──9–机器学习-概率图模型
|   ├──1–贝叶斯分类
|   |   ├──1-朴素贝叶斯分类算法  .mp4  126.74M
|   |   ├──2-TF-IDF  .mp4  53.08M
|   |   ├──3-NB代码实现解析  .mp4  126.73M
|   |   ├──4-sklearn中调用NB_顺便讲解了GridSearchCV  .mp4  131.83M
|   |   ├──5-语言模型的设计目的_MLE的作用进行参数估计  .mp4  107.12M
|   |   └──6-贝叶斯网络_马尔可夫链  .mp4  38.75M
|   ├──2–HMM算法
|   |   ├──1-HMM隐马的定义  .mp4  36.82M
|   |   ├──2-HMM隐马的三组参数_三个基本问题  .mp4  104.28M
|   |   ├──3-HMM预测问题使用前向算法  .mp4  44.33M
|   |   ├──4-HMM预测问题使用维特比算法  .mp4  33.43M
|   |   ├──5-HMM复习_明确概率计算问题要解决的目标  .mp4  76.05M
|   |   ├──6-前向算法来解决概率计算问题  .mp4  33.05M
|   |   ├──7-Viterbi算法案例详解  .mp4  107.12M
|   |   └──8-Viterbi算法代码实现  .mp4  42.43M
|   └──3–CRF算法
|   |   ├──1-NER与分词和POS的关系_NER的标注策略_NER的主要方法  .mp4  127.78M
|   |   ├──2-讲解了一下常见的深度学习LSTM+CRF的网络拓扑  .mp4  71.88M
|   |   ├──3-了解CRF层添加的好处  .mp4  105.90M
|   |   ├──4-EmissionScore_TransitionScore  .mp4  61.33M
|   |   ├──5-CRF的目标函数  .mp4  23.74M
|   |   ├──6-计算CRF真实路径的分数  .mp4  50.37M
|   |   ├──7-计算CRF所有可能路径的总分数  .mp4  135.58M
|   |   └──8-通过模型来预测新的句子的序列标签  .mp4  83.16M
└──课件.zip  2.54kb

声明:所有内容均收集于网络,收集的内容仅供内部学习和讨论,建议您在下载后的24个小时之内从您的电脑或手机中删除上述内容,如果您喜欢该内容,请支持并购买正版资源。如若本站内容侵犯了原著者的合法权益,请联系邮箱3641180084@qq.com,我们将及时处理。